Enumeration of No Strategy Games MIT Primes Conference 2015

Caleb Ji, Robin Park, Angela Song Mentor: Dr. Tanya Khovanova

May 2015

Definitions

Combinatorial game

A combinatorial game is a two player game where the last player to make a move is the winner.

Definitions

Combinatorial game

A combinatorial game is a two player game where the last player to make a move is the winner.

No luck involved

Definitions

Combinatorial game

A combinatorial game is a two player game where the last player to make a move is the winner.

No luck involved
Fixed set of moves from each position

Definitions

Combinatorial game
A combinatorial game is a two player game where the last player to make a move is the winner.

No luck involved
Fixed set of moves from each position

Game of No Strategy

A game of no strategy is a combinatorial game that has a predetermined winner based on the order of play, i.e. who plays first, who plays second, etc.

Chips Ahoy

Start: A pile of n distinguishable chips

Chips Ahoy

Start: A pile of n distinguishable chips

- Move: Divide a pile into two

Chips Ahoy

Start: A pile of n distinguishable chips
> Move: Divide a pile into two
End: n piles of one chip

Chips Ahoy

Start: A pile of n distinguishable chips
> Move: Divide a pile into two
End: n piles of one chip
Number of moves: $n-1$

Chips Ahoy

Start: A pile of n distinguishable chips

- Move: Divide a pile into two

End: n piles of one chip

- Number of moves: $n-1$

Number of ways to play:

$$
C_{n}=\frac{1}{2} \sum_{i=1}^{n-1}\binom{n}{i}\binom{n-2}{i-1} C_{i} C_{n-i}
$$

A Bored Kindergartner

Start: The integers between 1 and n written on the board

A Bored Kindergartner

Start: The integers between 1 and n written on the board

- Move: Replace two numbers with their sum

A Bored Kindergartner

- Start: The integers between 1 and n written on the board
- Move: Replace two numbers with their sum

End: $\frac{n(n+1)}{2}$ as the last number

A Bored Kindergartner

Start: The integers between 1 and n written on the board

- Move: Replace two numbers with their sum

End: $\frac{n(n+1)}{2}$ as the last number

- Number of moves: $n-1$

A Bored Kindergartner

- Start: The integers between 1 and n written on the board
- Move: Replace two numbers with their sum

End: $\frac{n(n+1)}{2}$ as the last number

- Number of moves: $n-1$

Number of ways to play:

$$
C_{n}=\prod_{i=2}^{n}\binom{i}{2}=\frac{n!(n-1)!}{2^{n-1}}
$$

Graphs

Graph

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E connecting some pairs of the vertices.

Graphs

Graph

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E connecting some pairs of the vertices.

A graph with vertices 1, 2, 3, 4, 5, 6, 7

Graphs

Graph

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E connecting some pairs of the vertices.

A graph with vertices 1, 2, 3, 4, 5, 6, 7

Directed Graph
A directed graph is a graph whose edges are given a direction.

Game-Graph Connection

The Graph of a Game
Vertices: positions of game

Game-Graph Connection

The Graph of a Game

Vertices: positions of game
Edges: directed edge between vertices connected by a move

Isomorphic Games

The previous two games correspond to the same graph:

Isomorphic Games

The previous two games correspond to the same graph:

The graph of both games for $n=4$

Isomorphic Games

Theorem

Suppose that the number of different ways to play the game is C_{n}. Then

$$
C_{n}=\frac{1}{2} \sum_{i=1}^{n-1}\binom{n}{i}\binom{n-2}{i-1} C_{i} C_{n-i}=\prod_{i=2}^{n}\binom{i}{2}=\frac{n!(n-1)!}{2^{n-1}} .
$$

Planted Brussel Sprouts

Statement of the Game
Start: A circle with n notches on its perimeter, with each notch having two ends, one inside the circle and the other outside

Planted Brussel Sprouts

Statement of the Game

Start: A circle with n notches on its perimeter, with each notch having two ends, one inside the circle and the other outside
Move: Connect two ends of two different notches such that the line drawn does not intersect any previously drawn lines, then draws another notch on this new line

Planted Brussel Sprouts

Statement of the Game

Start: A circle with n notches on its perimeter, with each notch having two ends, one inside the circle and the other outside
Move: Connect two ends of two different notches such that the line drawn does not intersect any previously drawn lines, then draws another notch on this new line
End: Whoever cannot move first loses

Planted Brussel Sprouts

Statement of the Game

Start: A circle with n notches on its perimeter, with each notch having two ends, one inside the circle and the other outside
Move: Connect two ends of two different notches such that the line drawn does not intersect any previously drawn lines, then draws another notch on this new line
End: Whoever cannot move first loses

Planted Brussel Sprouts

Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Number of moves
n vertices, m moves

Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Number of moves
n vertices, m moves
planar graph $G=(V, E)$

Proof of No Strategy

Euler characteristic
In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Number of moves
n vertices, m moves
planar graph $G=(V, E)$
$V=m+n, E=2 m+n, F=n+1$ at end state

Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Number of moves
n vertices, m moves
planar graph $G=(V, E)$
$V=m+n, E=2 m+n, F=n+1$ at end state
$m=n-1$

Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

$$
V-E+F=2
$$

Number of moves
n vertices, m moves
planar graph $G=(V, E)$
$V=m+n, E=2 m+n, F=n+1$ at end state
$m=n-1$

Induction

Each move breaks the game into two smaller games with one less total vertex. By induction the game will take $n-1$ moves.

Number of Ways to Play

Theorem
The number of ways to play x_{n} satisfies

$$
x_{n}=\frac{n}{2} \sum_{i=1}^{n-1}\binom{n-2}{i-1} x_{i} x_{n-i} .
$$

Number of Ways to Play

Theorem

The number of ways to play x_{n} satisfies

$$
x_{n}=\frac{n}{2} \sum_{i=1}^{n-1}\binom{n-2}{i-1} x_{i} x_{n-i} .
$$

Connection with Spanning Trees
number of ways to play equals the number of spanning trees on n vertices.

Number of Ways to Play

Theorem

The number of ways to play x_{n} satisfies

$$
x_{n}=\frac{n}{2} \sum_{i=1}^{n-1}\binom{n-2}{i-1} x_{i} x_{n-i} .
$$

Connection with Spanning Trees
number of ways to play equals the number of spanning trees on n vertices.
$x_{n}=n^{n-2}$ (Cayley's formula)

Mozes's Game of Numbers

IMO 1986 \#3
Start: A regular pentagon (or, in general, any regular polygon) with integers $x_{1}, x_{2}, \ldots, x_{n}$ assigned to each vertex. The sum of the integers must be positive.

Mozes's Game of Numbers

IMO 1986 \#3

Start: A regular pentagon (or, in general, any regular polygon) with integers $x_{1}, x_{2}, \ldots, x_{n}$ assigned to each vertex. The sum of the integers must be positive.
Move: If three consecutive vertices are assigned the numbers x, y, and z, respectively, where $y<0$, then a move replaces x, y, and z with $x+y,-y$, and $z+y$, respectively.

Mozes's Game of Numbers

IMO 1986 \#3

Start: A regular pentagon (or, in general, any regular polygon) with integers $x_{1}, x_{2}, \ldots, x_{n}$ assigned to each vertex. The sum of the integers must be positive.
Move: If three consecutive vertices are assigned the numbers x, y, and z, respectively, where $y<0$, then a move replaces x, y, and z with $x+y,-y$, and $z+y$, respectively.
End: A polygon with all nonnegative vertices

Strictly Decreasing Monovariants

Indices are taken mod n.

- Squares of differences:

$$
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{i=1}^{5}\left(x_{i}-x_{i+2}\right)^{2}
$$

Strictly Decreasing Monovariants

- Indices are taken mod n.
> Squares of differences:

$$
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{i=1}^{5}\left(x_{i}-x_{i+2}\right)^{2}
$$

Squares:

$$
f_{2}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}
$$

Strictly Decreasing Monovariants

Indices are taken mod n.
Squares of differences:

$$
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{i=1}^{5}\left(x_{i}-x_{i+2}\right)^{2}
$$

Squares:

$$
f_{2}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}
$$

Arc sums:

$$
f_{3}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=i+1}^{n+i-2}\left|x_{i}+x_{i+1}+\cdots+x_{i+j}\right|
$$

Fixed Length Game

Theorem
If the initial sum of the numbers S is positive, then the game will terminate in a fixed number of moves.

Fixed Length Game

Theorem
If the initial sum of the numbers S is positive, then the game will terminate in a fixed number of moves.

Number of Moves (Alon et al.)
The game takes

$$
\sum_{a_{\lambda}<0} \frac{\left|a_{\lambda}\right|}{S}
$$

moves, where the sum ranges over all negative arc sums.

Number of Ways to Play

Theorem
Beginning with numbers $-a, 2 k+1,-2 k+a, 0,0,0, \ldots$ on an $(m+2)$-gon with $k, m, a>0$, there are $\binom{2 m k}{m a}$ ways to play.

Number of Ways to Play

Theorem

Beginning with numbers $-a, 2 k+1,-2 k+a, 0,0,0, \ldots$ on an $(m+2)$-gon with $k, m, a>0$, there are $\binom{2 m k}{m a}$ ways to play.

Corollary: Beginning with numbers $-k, 2 k+1,-k, 0,0,0, \ldots$, there are $\binom{2 m k}{m k}$ ways to play.

A Chocolate Break

Statement of the Game

Consider a gridded $m \times n$ chocolate bar. The first player breaks the bar along one of its grid lines. Each move after that consists of taking any piece of chocolate and breaking it along existing grid lines, until only individual squares remain. The first player unable to break a piece loses.

A bar of chocolate

A Chocolate Break

Proof of No Strategy

Each move increases the number of chocolate pieces by 1 . Since the game ends with $m n$ individual squares, the ($m n-1$) th break must be the last.

Number of Ways to Play $(2 \times n)$

Theorem
Suppose the number of ways to play on a $2 \times n$ bar is B_{n}. Then

$$
B_{n}=(2 n-2)!+\sum_{m=1}^{n-1}\binom{2 n-2}{2 m-1} B_{m} B_{n-m} .
$$

Number of Ways to Play $(m \times n)$

Theorem

Suppose the number of ways to play on a $m \times n$ bar is $A_{m, n}$. Then

$$
A_{m, n}=\sum_{i=1}^{m-1}\binom{m n-2}{i n-1} A_{i, n} A_{m-i, n}+\sum_{i=1}^{n-1}\binom{m n-2}{i m-1} A_{m, i} A_{m, n-i} .
$$

Values of $A_{2, n}=B_{n}$

n	B_{n}	factorization of B_{n}	
1	1	1	
2	4	2^{2}	
3	56	$2^{3} \cdot 7$	
4	1712	$2^{4} \cdot 107$	
5	92800	$2^{7} \cdot 5^{2} \cdot 29$	
6	7918592	$2^{10} \cdot 11 \cdot 19 \cdot 37$	
7	984237056	$2^{10} \cdot 11 \cdot 59 \cdot 1481$	
8	168662855680	$2^{12} \cdot 5 \cdot 11 \cdot 31 \cdot 24151$	
9	38238313152512	$2^{15} \cdot 11 \cdot 571 \cdot 185789$	
10	11106033743298560	$2^{17} \cdot 5 \cdot 11 \cdot 1607 \cdot 958673$	
11	4026844843819663360	$2^{18} \cdot 5 \cdot 11 \cdot 97 \cdot 9371 \cdot 307259$	
12	1784377436257886142464	$2^{19} \cdot 11^{2} \cdot 569 \cdot 185833 \cdot 266009$	
	Values and factorizations of $A_{2, n}=B_{n}$		

Values of $A_{m, n}$

	1	2	3	4	5
1	1	1	2	6	24
2	1	4	56	1712	92800
3	2	56	9408	4948992	6085088256
4	6	1712	4948992	63352393728	2472100837326848
5	24	92800	6085088256	2472100837326848	3947339798331748515840
	Values of $A_{m, n}$				

Properties of $A_{m, n}$

Theorem

$$
\nu_{2}\left(A_{m, n}\right) \geq m+n-2 \text { for } m, n>1 .
$$

Properties of $A_{m, n}$

Theorem

$$
\nu_{2}\left(A_{m, n}\right) \geq m+n-2 \quad \text { for } \quad m, n>1 \text {. }
$$

Corollary: $\nu_{2}\left(B_{n}\right) \geq n$ for $n>1$

Properties of B_{n}

Theorem
If $n \equiv 0$ or $1(\bmod 3)$, then $B_{n} \equiv 2(\bmod 3)$. If $n \equiv 2(\bmod 3)$, then $B_{n} \equiv 1(\bmod 3)$.

Properties of B_{n}

Theorem

$$
\begin{aligned}
& \text { If } n \equiv 0 \text { or } 1(\bmod 3) \text {, then } B_{n} \equiv 2(\bmod 3) . \text { If } n \equiv 2(\bmod 3) \text {, } \\
& \text { then } B_{n} \equiv 1(\bmod 3) .
\end{aligned}
$$

Theorem

Given any positive integer n, for all positive integers k dividing B_{i} for all $\left\lfloor\frac{n+1}{2}\right\rfloor \leq i \leq n-1$ and satisfying $k \mid(2 n-2)$!, then $k \mid B_{j}$ for all $j \geq n$.

Properties of B_{n}

Theorem

$$
\begin{aligned}
& \text { If } n \equiv 0 \text { or } 1(\bmod 3) \text {, then } B_{n} \equiv 2(\bmod 3) . \text { If } n \equiv 2(\bmod 3) \text {, } \\
& \text { then } B_{n} \equiv 1(\bmod 3) .
\end{aligned}
$$

Theorem

Given any positive integer n, for all positive integers k dividing B_{i} for all $\left\lfloor\frac{n+1}{2}\right\rfloor \leq i \leq n-1$ and satisfying $k \mid(2 n-2)$!, then $k \mid B_{j}$ for all $j \geq n$.

Corollary 1: For all $i \geq 6,11 \mid B_{i}$.
Corollary 2: For all $i \geq 13,5 \mid B_{i}$.

Un problème à la $\bmod (\mathrm{e})$

Start: A string of m zeroes and n ones written on a board

Un problème à la $\bmod (\mathrm{e})$

- Start: A string of m zeroes and n ones written on a board

Move: Replace two numbers with their sum mod 2. For example, two ones would be replaced by a zero.

Un problème à la $\bmod (\mathrm{e})$

- Start: A string of m zeroes and n ones written on a board

Move: Replace two numbers with their sum mod 2. For example, two ones would be replaced by a zero.
End: One remaining number - note that the final number is fixed

Number of Ways to Play

We assume zeroes and ones are indistinguishable, and that two moves are indistinguishable if they produce the same result.

Number of Ways to Play

We assume zeroes and ones are indistinguishable, and that two moves are indistinguishable if they produce the same result.

Define $f(m, n)$ to be the number of distinct ways to play the game with m zeroes and n ones.

Recursion

$$
f(m, n)=f(m-1, n)+f(m+1, n-2) \quad \text { for } \quad m, n>2 .
$$

Connection with Catalan Numbers

Definition

Let C_{n} be the number of strings of $n X$'s and n Y's such that no segment of the string starting from the beginning has more X 's than Y's. Then

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Connection with Catalan Numbers

Definition

Let C_{n} be the number of strings of $n X$'s and n Y's such that no segment of the string starting from the beginning has more X 's than Y's. Then

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Theorem

$$
f(0,2 n)=f(0,2 n+1)=C_{n} .
$$

Connection with the Catalan Triangle

Definition

Let $C_{n, k}$ be the number of strings of n X's and k 's such that no segment of the string starting from the beginning has more X 's than Y's. Then

$$
C_{n, k}=\frac{n+1}{n+k+1}\binom{n+2 k}{k} .
$$

Connection with the Catalan Triangle

Definition

Let $C_{n, k}$ be the number of strings of $n X$'s and k 's such that no segment of the string starting from the beginning has more X 's than Y's. Then

$$
C_{n, k}=\frac{n+1}{n+k+1}\binom{n+2 k}{k} .
$$

Theorem

$$
f(n, 2 k)=f(n, 2 k+1)=C_{n, k} .
$$

Future Research

Sequence Bounds

Future Research

Sequence Bounds
Periodicity Rules

Future Research

Sequence Bounds
Periodicity Rules
Games on 3D Surfaces

Future Research

Sequence Bounds

- Periodicity Rules
- Games on 3D Surfaces
> Mozes's Game of Numbers

Acknowledgements

Dr. Tanya Khovanova

- Prof. James Propp

Carl Lian

- MIT-PRIMES

