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Definitions

Combinatorial game

A combinatorial game is a two player game where the last player
to make a move is the winner.

I No luck involved

I Fixed set of moves from each position

Game of No Strategy

A game of no strategy is a combinatorial game that has a
predetermined winner based on the order of play, i.e. who plays
first, who plays second, etc.
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Chips Ahoy

I Start: A pile of n distinguishable chips

I Move: Divide a pile into two

I End: n piles of one chip

I Number of moves: n − 1

I Number of ways to play:
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A Bored Kindergartner

I Start: The integers between 1 and n written on the board

I Move: Replace two numbers with their sum

I End: n(n+1)
2 as the last number

I Number of moves: n − 1

I Number of ways to play:
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Graphs

Graph

A graph G = (V ,E ) consists of a set of vertices V and a set of
edges E connecting some pairs of the vertices.
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A graph with vertices 1, 2, 3, 4, 5, 6, 7

Directed Graph

A directed graph is a graph whose edges are given a direction.
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Game-Graph Connection

The Graph of a Game

I Vertices: positions of game

I Edges: directed edge between vertices connected by a move
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Isomorphic Games

The previous two games correspond to the same graph:

(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (14)(2)(3) (23)(1)(4) (24)(1)(3) (34)(1)(2)

(123)(4) (124)(3) (134)(2) (234)(1) (12)(34) (13)(24) (14)(23)

(1234)

The graph of both games for n = 4
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Isomorphic Games

Theorem

Suppose that the number of different ways to play the game is Cn.
Then
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Planted Brussel Sprouts

Statement of the Game

I Start: A circle with n notches on its perimeter, with each
notch having two ends, one inside the circle and the other
outside

I Move: Connect two ends of two different notches such that
the line drawn does not intersect any previously drawn lines,
then draws another notch on this new line

I End: Whoever cannot move first loses

→

Planted Brussel Sprouts
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Proof of No Strategy

Euler characteristic

In a planar graph with V vertices, E edges and F faces,

V − E + F = 2.

Number of moves

I n vertices, m moves

I planar graph G = (V ,E )

I V = m + n, E = 2m + n, F = n + 1 at end state

I m = n − 1

Induction

Each move breaks the game into two smaller games with one less
total vertex. By induction the game will take n − 1 moves.
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Number of Ways to Play

Theorem

The number of ways to play xn satisfies
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Connection with Spanning Trees

I number of ways to play equals the number of spanning trees
on n vertices.

I xn = nn−2 (Cayley’s formula)
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Mozes’s Game of Numbers

IMO 1986 #3

I Start: A regular pentagon (or, in general, any regular
polygon) with integers x1, x2, . . . , xn assigned to each vertex.
The sum of the integers must be positive.

I Move: If three consecutive vertices are assigned the numbers
x , y , and z , respectively, where y < 0, then a move replaces
x , y , and z with x + y , −y , and z + y , respectively.

I End: A polygon with all nonnegative vertices
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Strictly Decreasing Monovariants

I Indices are taken mod n.

I Squares of differences:

f1(x1, x2, x3, x4, x5) =
5∑

i=1

(xi − xi+2)2

I Squares:

f2(x1, x2, x3, . . . , xn) =
n∑

i=1

x2i

I Arc sums:

f3(x1, x2, x3, . . . , xn) =
n∑

i=1

n+i−2∑
j=i+1

|xi + xi+1 + · · ·+ xi+j |
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Fixed Length Game

Theorem

If the initial sum of the numbers S is positive, then the game will
terminate in a fixed number of moves.

Number of Moves (Alon et al.)

The game takes ∑
aλ<0

|aλ|
S

moves, where the sum ranges over all negative arc sums.
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Number of Ways to Play

Theorem

Beginning with numbers −a, 2k + 1,−2k + a, 0, 0, 0, . . . on an
(m + 2)-gon with k,m, a > 0, there are

(2mk
ma

)
ways to play.

I Corollary: Beginning with numbers −k , 2k + 1,−k , 0, 0, 0, . . . ,
there are
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ways to play.
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A Chocolate Break

Statement of the Game

Consider a gridded m × n chocolate bar. The first player breaks
the bar along one of its grid lines. Each move after that consists of
taking any piece of chocolate and breaking it along existing grid
lines, until only individual squares remain. The first player unable
to break a piece loses.

A bar of chocolate



A Chocolate Break

Proof of No Strategy

Each move increases the number of chocolate pieces by 1. Since
the game ends with mn individual squares, the (mn − 1)th break
must be the last.



Number of Ways to Play (2× n)

Theorem

Suppose the number of ways to play on a 2× n bar is Bn. Then

Bn = (2n − 2)! +
n−1∑
m=1

(
2n − 2

2m − 1

)
BmBn−m.



Number of Ways to Play (m × n)

Theorem

Suppose the number of ways to play on a m × n bar is Am,n. Then

Am,n =
m−1∑
i=1

(
mn − 2

in − 1

)
Ai ,nAm−i ,n +

n−1∑
i=1

(
mn − 2

im − 1

)
Am,iAm,n−i .



Values of A2,n = Bn

n Bn factorization of Bn

1 1 1
2 4 22

3 56 23 · 7
4 1712 24 · 107
5 92800 27 · 52 · 29
6 7918592 210 · 11 · 19 · 37
7 984237056 210 · 11 · 59 · 1481
8 168662855680 212 · 5 · 11 · 31 · 24151
9 38238313152512 215 · 11 · 571 · 185789
10 11106033743298560 217 · 5 · 11 · 1607 · 958673
11 4026844843819663360 218 · 5 · 11 · 97 · 9371 · 307259
12 1784377436257886142464 219 · 112 · 569 · 185833 · 266009

Values and factorizations of A2,n = Bn



Values of Am,n

1 2 3 4 5
1 1 1 2 6 24
2 1 4 56 1712 92800
3 2 56 9408 4948992 6085088256
4 6 1712 4948992 63352393728 2472100837326848
5 24 92800 6085088256 2472100837326848 3947339798331748515840

Values of Am,n



Properties of Am,n

Theorem

ν2(Am,n) ≥ m + n − 2 for m, n > 1.

I Corollary: ν2(Bn) ≥ n for n > 1
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Properties of Bn

Theorem

If n ≡ 0 or 1 (mod 3), then Bn ≡ 2 (mod 3). If n ≡ 2 (mod 3),
then Bn ≡ 1 (mod 3).

Theorem

Given any positive integer n, for all positive integers k dividing Bi

for all
⌊
n+1
2

⌋
≤ i ≤ n − 1 and satisfying k |(2n − 2)!, then k|Bj for

all j ≥ n.

I Corollary 1: For all i ≥ 6, 11|Bi .

I Corollary 2: For all i ≥ 13, 5|Bi .
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Un problème à la mod(e)

I Start: A string of m zeroes and n ones written on a board

I Move: Replace two numbers with their sum mod 2. For
example, two ones would be replaced by a zero.

I End: One remaining number — note that the final number is
fixed
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Number of Ways to Play

I We assume zeroes and ones are indistinguishable, and that two
moves are indistinguishable if they produce the same result.

Define f (m, n) to be the number of distinct ways to play the game
with m zeroes and n ones.

Recursion

f (m, n) = f (m − 1, n) + f (m + 1, n − 2) for m, n > 2.
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Connection with Catalan Numbers

Definition

Let Cn be the number of strings of n X’s and n Y’s such that no
segment of the string starting from the beginning has more X’s
than Y’s. Then

Cn =
1

n + 1

(
2n

n

)
.

Theorem

f (0, 2n) = f (0, 2n + 1) = Cn.
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Connection with the Catalan Triangle

Definition

Let Cn,k be the number of strings of n X’s and k Y’s such that no
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